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Let R be a region in n-space and Q a linear quadrature formula for R of the
form

Q(f) = I ar!(x.).

It is known that if Q(f) = fRfwhenever lis a polynomial of degree 3 or lower,
then k > n + 1. It is known that the minimum possible value of k depends on the
region R, being 2n for the n-cube and n + 2 for the n-simplex (n > 1). In 1956
Hammer and Stroud conjectured that k > n + 2 for every R, when n > I. In this
paper we construct an R, and a Q with the required property, with k = n + 1.

An important problem in the theory of numerical quadrature has been the
extension, to integration of functions of several variables, of the idea of the
"Gaussian" quadrature formulas for functions of one variable. The latter are
families of I-point linear formulas

b !f f(x) dx ~ Q(f) = I aTf(xT)
a r=l

(l = 1,2,...)

which integrate exactly all polynomials of degree 21 - 1 or lower. It is known
that they are "most efficient"-that is, if we let the "degree of precision" of a
linear quadrature formula be the highest integer d such that

rP(x) dx = Q(P)
a
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whenever P is a polynomial of degree d or lower, then I, the number of points
used in Q, must be at least I + [dI2] (where "[x]" denotes the greatest
integer less than or equal to x). Gaussian formulas are known to exist for all
intervals on the real line, whether finite, semiinfinite, or infinite, for integra
tion with respect to any nonnegative weight function w(x) for which

bJw(x)xm dx < 00,
a

m = 0, 1,2,....

For multiple integrals the situation is quite different. The number of
linearly independent polynomials of degree d or lower-in n variables-is

It is known [1] that if R is any n-dimensional region then a formula

If f ~ Q(f) = L ar/(xr)
R r=l

that is of degree d must have

1 >- (n + [dI2])
?' [dI2] , (1)

but it is definitely not the case that the lower bound in (1) can be attained for
every d and for every region R. A survey of some of the recent work on this
problem may be found in [2, pp. 488-497]; here we shall mention only a few
of the known results. For d = 0 or 1, the lower bound in (1) is 1, and the
I-point formula in which Xl is the centroid of Rand al the volume of R is
indeed of degree 1. For d = 2 the minimum number of points needed is
n + 1, and Thacher [3] and Stroud [4] have found (n + I)-point formulas
of degree 2 for all finite regions R. For d ~ 3 the situation for n ~ 2 becomes
different from the one-dimensional situation. With d = 3, the lower bound
in (1) is n + 1; however, Mysovskih [5] has shown that if R is the n-cube the
lowest possible number of points in a degree-3 formula is 2n. On the other
hand, Stroud and Hammer [6] found a formula of degree 3 for the n-simplex
using n + 2 points. Stroud and Hammer conjectured that there is no bounded
region R in n-space, n > 1, for which there exists a degree-3 quadrature
formula using only n + I points. Stroud [11] conjectured further that the
lower bound in (1) is not attainable for any odd d > I, with n > 1. In this
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paper we shall show that these conjectures are incorrect, so that the lower
bound in (I) is attainable for some regions when d = 3.1

THEOREM. Let n be an integer ~2. Let a be a regular n-simplex in Euclidean
n-space En, having its center of mass at the origin and having one vertex at
(l, 0, 0, ... , 0). Let Po ,PI , P2 ,... , Pn be the vertices of a, and, for any function f
defined on a, set

n

Q(f) =, I/(n + 1) L f(Pi)'
i=O

Then there is a region R n such that

III Rn If P '=-~ Q(P),
Rn

(2)

whenever P is a polynomial of degree 3 or lower.

(Here" I R i " denotes the volume of R, when R is a region in En; later on
we shall also use I R I to denote the "area" of R when R is a region on the unit
n-sphere.)

Proof Let Gn be the symmetry group of the simplex a-i.e., the group
of all isometries of En taking a onto itself. It is known [7, p. 130] that Gn is
isomorphic to the symmetric group on n + I letters (in fact the elements of
Gn , acting on the vertices of a, are just all the permutations of those vertices).
We first specify that the region Rn be invariant under Gn-i.e., that
g(Rn) = R n for every g E Gn . The center of mass of R n will, thus, be at the
origin, and (2) will certainly hold whenever P is of degree °or I.

A function f is called "invariant under Gn" if f(g(x)) =-= f(x) for every
g E Gn • Iff is any function, set

!(x) = I/(n -1- I)! L f(g(x)).
geGn

For any h E Gn ,

!(h(x)) = I/(n + I)! L f(g(h(x))) = I/(n + I)! L f«g . h)(x))
!1EGn geGn

= I/(n -T- I)! L f(g(x)) = !(x),
gEGn

1 After this paper was written, we were informed by Stroud that the theorem below had
already been found by F. N. Fritsch in a paper which has since appeared as [12]. The region
Rn that we construct is different from that found by Fritsch, but the methods of the present
paper and of [12] are closely related. However, where Fritsch bases his work on an apparent
ly very special algebraic theorem due to Stroud [13], we use the Hilbert basis theorem in a
manner which, we feel, makes the underlying algebraic situation clearer. In part as a
result, the algebraic and analytic manipulations in this paper are somewhat simpler than
Fritsch's.
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since, as g runs through the elements of Gn , so does g . h. (Here g . h is the
product, in Gn , of g and h-i.e., their composition.) Thus, j is always in
variant under G... Furthermore, as can easily be seen,

1/1 R .. If j(x) dx = 1/1 Rn If f(x) dx
Rn Rn

and

Q(j) = Q(f).

It follows that a n.a.s.c. for (2) to hold for a function f is that it hold for j.
Now when f is a polynomial, j is a polynomial of the same degree, and so
a n.a.s.c. for (2) to hold for all polynomials of degrees 2 and 3 is that it holds
for all polynomials of degrees 2 and 3 that are invariant under Gn . Poly
nomials invariant under a group G of linear transformations are known,
simply, as "invariants" of G.

It is a classical theorem of Hilbert (see, e.g. [8, pp. 274-276]) that the set
of all invariants of a finite2 group G has a finite "integrity basis"-i.e., that
there is a finite collection of invariants {P1 , P2 ,... , Pk } such that every
invariant is a polynomial in P1 , P2 ,... , Pk • The particular group Gn with
which we are dealing is one generated by those of its members which are
reflections [7, p. 187]. For such groups it was shown by Chevalley [9] that
their invariants have an integrity basis consisting of n algebraically indepen
dent homogeneous invariant polynomials, of certain degrees m1 , m2 ,... , m...
For the group Gn , Coxeter (who denotes this group by "[3n - 1]") gives the
numbers m1 , m2 ,... , mn as 2, 3, 4, ... , n + 1 [10, Table 3].

Now we observe that the polynomial

is invariant under G... If {7T2' 7T3 ,... , 7Tn+1} (deg7Tr = r) is an integrity basis
for the invariants of Gn , of the kind described by Chevalley, and
12 = P(7T2 , 7T3 ,..., 7Tn+1)' then indeed P(7T2 , 7T3 ,... , 7Tn+1) is just C7T2' for some
nonzero constant c. Otherwise P(7T2 , ... , 7T..+1) would contain terms of degree
higher than 2, and the sum of all those terms-which would itself be a poly
nomial in 7T2' 7T3 ,... , 7Tn+1-would be identically zero, contradicting the
algebraic independence of the 7Ti . By the same reasoning, any other invariant
of Gn of degree 2 is a constant multiple of 7T2 and thus of12 , Similarly,

n

/3(X) = I (x . Pr)3
T=O

2 Hilbert's theorem is not restricted to finite groups.
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(where "x . P:' is the inner product of x and Pr) is a homogeneous invariant
of degree 3, and any other homogeneous invariant of Gn of degree 3 is a
constant multiple of Is. Any invariant of Gn of degree 3 is then a linear
combination of 12 and Is .

It follows that (2) will hold for all P's of degree 2 and 3 if and only if it holds
for 12and Is . To calculate Q(I2) and Q(Is), we note that ifjis invariant under
Gn ,

n

Q(j) = l/(n + 1) L f(Pr) = f(Po);
r~O

and we may take Po to be the vertex (1, 0, 0, .." 0). SO Q(I2) = 1; and since the
first coordinate of each of the vertices PI , P2 ,.. " Pn is -lin,

n

Q(Is) = L (p/)S = 1 - lln2,
r~O

Call this last quantity, for convenience, "b". To complete the proof of the
theorem, it is now necessary and sufficient to find a region Rn (invariant under
Gn) such that

(3)

and

(4)

We first introduce polar coordinates, representing any point x in En by
(r, cp), where r is the distance of x from the origin, and cp the point in which
the ray from the origin through x meets the unit sphere Sn's Gn, acting on Sn,
partitions it into (n + I)! congruent "fundamental regions" [7, p. 63 and
Chapter XI] which are spherical simplexes and which are interchanged under
the elements of Gn ' Choose one of them, containing the point Po (as a vertex);
call it F. In the cone CF = {r, T I cp E F} we shall construct a region RF ; Rn

shall consist of R F together with all its images under the transformations
g E Gn , which guarantees that R n will be invariant under Gn . It is clear that

r = 2,3.

Thus, conditions (3) and (4) must be satisfied with RF in place of Rn •

3 Here Sn is the set of all x satisfying (Xl)" + (x")" + ... + (xn)" = 1. Below we shall
refer to the "unit ball" Bn , defined by (Xl? + (X2)2 + ." + (Xn)2 <: 1.
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Let F. be the intersection of F with an E-neighborhood of Po, E to be
specified later. Let p be a number ;:? 1, also to be specified later, and set

RF = R u R',

R = {(r, <p)1 O:S;; r:S;; I, <pEF},

R' = {(r, <p)1 1 :s;; r :s;; p, <p EF.}.

Now
I R I = 1 Bn I/(n + I)!,

where Bn is the unit n-ball. Also

1 R' I = r dr f dIJ-,
1 rF.

(5)

where rF. is the set of all (r, <p) with <p E F. , and dIJ- is the area measure on the
appropriate n-sphere (that of radius r). Thus,

1 R' 1 = r dr (rn- 1 f dIJ-) = ((pn - 1)ln) I F.I. (6)
1 F.

We now integrate 12 and I g over Rand R':

= (l/(n + 2))(1 Sn I/(n + I) !).

f I g = I/(n + I)! J I g = I/(n + I)! f. J (x' Pi)g
R ~ ~ ~

In a manner similar to the calculation of (6) we obtain

f 12 = ((pn+2 - 1)/(n + 2)) 1 F. I.
R'

For Enear zero, Ig(x) is very near Ig(po) = b throughout F. ; thus,

(7)

(8)

(9)

fR,Ig = ((pn+g - 1)/(n + 3))b IF.I (1 + O(E)), as E -- O. (l0)
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Now let EO be the least E for which F. = F. We will show that for any e in
[0, EO] we may choose a P = P*(E) for which R' will be such that

i.e., so that (2) will hold for 12 : First take E = EO • Then R F is just the region
{(r, 1p)1 0 ~ r ~ p, Ip E F}. In the same manner as we obtained (5) and (7),
we obtain

I R F I = (\ Bn I/(n + I)!) pn,

Thus,

f 12 = (p"+2/(n + 2))(1 S" I/(n + I)!).
Rp

III R F If 12 = (nl(n + 2)) p2,
Rp

and we take

P*(EO) = «n + 2)/n)1/2.

For E < EO, we note that

III R If
R

12 = nl(n + 2) < 1

and

III R' If 12 = (nl(n + 2))«pM2 - I)/(p" - 1)). (11)
R'

The right side of (11) is an increasing function of p, that goes from 1 to 00

as p goes from 1 to 00. Thus,

f 12 - I R' I
R'

increases from zero to infinity, and we set p*("-) to be that value of p for
which it is equal to I R I - JR 12 •

By (6) and (9) we see that for any fixed p the quantity JR' 12- I R' Iwill go
to zero as E ---+ 0, since IF. I goes to zero. On the other hand, I R I - fR 12 is
independent of E. Thus, p*(e) must go to infinity as E ---+ 0, and it is easy to
see that p* is continuous in E.

We now, for each E, take p = P*(E), specifying R' and R p as functions of E.

Set

L1(E) = III R p If la - b.
Rp
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By the same reasoning as was used for (8) we see that JoB" /3 = 0 and so
Ll(EO) = -b. By (10) and (9), as E-+ 0, JR' /a/JR'/2 -+ 00. Since, by (11),
I R' I = O(JR' /2),

However,

J /2 - I R' I
R'

which is independent of E; so

I R 1- t /2'

J I, - I R' ! -+ XJ
R'

as E -+ O. Thus, for E sufficiently near zero, JR' /a - I R' I, and a fortiori
JR' /a - b 1R' I , is greater than b I R I • Therefore,

and so Ll(E) > O. Thus, Ll is negative at EO and positive near 0 and is con
tinuous in E; setting E equal to a zero of Ll completes the definition of RF and
the proof of the theorem.

RF is made up of a cone consisting of all the radii from the origin to the
fundamental region F on Sn , together with a radial spike sticking out from
part of F, to some distance p > I. The line from the origin to Po lies on one
edge of this spike. n! fundamental regions meet at Po-F is one of them-and
the n! corresponding spikes meet along the line from the origin to Po to form
a single spike. Thus, the shape of the final region Rn is that of an n-ball with
n + I radial spikes sticking out of it.
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